WHY IS THIS IMPORTANT?

- Innate immune responses are nonspecific host defense mechanisms.
- They are of paramount importance for fighting off infectious disease.

OVERVIEW
TWO TYPES OF IMMUNE RESPONSE

- Innate
 - Nonspecific, immediately available, without memory
- Adaptive
 - Specific, takes several days to develop, has memory

INNATE IMMUNE RESPONSE

- Has two parts:
 - Barriers - prevent the entry of pathogens
 - Cellular and chemical mechanisms - destroy pathogens
- Responses are triggered by damage to cells or tissues.

FIRST LINE OF DEFENSE: Barriers

- Natural barriers are the first line of defense.
 - Not exclusively defense mechanisms and have other functions
- Two types of barriers:
 - Mechanical
 - Skin
 - Mucous membranes
 - Other barriers – lachrymal apparatus, saliva, and epiglottis
 - Chemical
MECHANICAL BARRIERS: Skin

- Skin is covered in microorganisms.
- It is impermeable to entry by microorganisms.
 - Entry requires breaks in the skin.

- Skin is divided into two layers:
 - Epidermis – no access to blood so only localized infection occurs
 - Dermis – access to blood vessels so infection here can become systemic
- Loss of skin can lead to serious infection.
 - Burn injuries

MECHANICAL BARRIERS: Mucous Membranes

- Found in systems with access to the outside of the body
 - Respiratory tract
 - Gastrointestinal tract
 - Genitourinary tract
- Primary function is to keep tissues moist.
- They can also trap microorganisms in mucus.
 - The mucociliary escalator of the respiratory tract
MECHANICAL BARRIERS: Mucous Membranes

- Protects the eyes from entry by pathogens.
 - Causes tears to flush across eye
 - Tears contain lysozyme, lipocalin, and IgA

MECHANICAL BARRIERS: Lachrymal Apparatus

- Protects the eyes from entry by pathogens.
 - Causes tears to flush across eye
 - Tears contain lysozyme, lipocalin, and IgA

MECHANICAL BARRIERS: Saliva

- Cleans teeth and tissues of the oral cavity
- Prepares food for digestion
- Inhibits microbial growth:
 - Contains lysozyme and IgA
MECHANICAL BARRIERS:
Epiglottis

- Prevents aspiration of food into the lungs.
- Also prevents entry of microorganisms into the lungs.

CHEMICAL BARRIERS

- Many chemical substances are secreted by the body including:
 - Sebum
 - Perspiration
 - Gastric juice
 - Urine
 - Transferrin
- Barrier defense is not their primary function.

CHEMICAL BARRIERS:
Sebum

- Produced by sebaceous glands
 - Forms a protective layer on the skin.
- Contains unsaturated fatty acids and organic acids
 - Inhibit bacterial growth by lowering pH.
CHEMICAL BARRIERS: Perspiration

- Regulates body temperature and eliminates waste
- Barrier against microorganisms in two ways:
 - Flushes them from the skin
 - Contains lysozyme

CHEMICAL BARRIERS: Gastric Juice

- Gastric juice includes:
 - Stomach acids
 - Enzymes
- The harsh chemical environment limits microbial growth.
- Some organisms survive this environment
 - *Helicobacter pylori* resides in the stomach.

CHEMICAL BARRIERS: Urine

- Used to secrete waste material from the body
- Barrier against microorganisms in two ways:
 - It is acidic.
 - Its flushing action prevents attachment
CHEMICAL BARRIERS:
Transferrin

- Transferrin binds iron.
- It competitively inhibits the growth of pathogens.

SECOND LINE OF DEFENSE:
Cellular and Chemical Responses

- One cellular response:
 - Phagocytosis
- Several chemical responses:
 - Inflammation
 - Fever
 - The complement system
 - Interferon

TOLL-LIKE RECEPTORS

- Toll-like receptors (TLRs) are used to differentiate between self and nonself antigens.
 - Located on the surface of host defense cells
 - Bind to antigens found on pathogens
TOLL-LIKE RECEPTORS

- TLRs are activated as soon as it binds to a target antigen.
- Causes the host cell to release inflammatory substances
 - Primarily tumor necrosis factor (TNF)

TOLL-LIKE RECEPTORS

<table>
<thead>
<tr>
<th>TOLL-like Receptor</th>
<th>Ligand Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLR-1</td>
<td>Lipoproteins</td>
</tr>
<tr>
<td>TLR-2</td>
<td>Bacterial lipoproteins</td>
</tr>
<tr>
<td>TLR-3</td>
<td>Double-stranded RNA</td>
</tr>
<tr>
<td>TLR-4</td>
<td>Lipopolysaccharide, some viral proteins</td>
</tr>
<tr>
<td>TLR-5</td>
<td>Flagellar protein</td>
</tr>
<tr>
<td>TLR-6</td>
<td>Lipopolysaccharide acid</td>
</tr>
<tr>
<td>TLR-7</td>
<td>Single-stranded RNA</td>
</tr>
<tr>
<td>TLR-8</td>
<td>Single-stranded RNA</td>
</tr>
<tr>
<td>TLR-9</td>
<td>Bacterial DNA</td>
</tr>
<tr>
<td>TLR-10</td>
<td>Unknown</td>
</tr>
<tr>
<td>TLR-11</td>
<td>Transmembrane proteins</td>
</tr>
<tr>
<td>TLR-12</td>
<td>Unknown</td>
</tr>
<tr>
<td>TLR-13</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

CELLULAR RESPONSE:
Phagocytosis

- The innate immune response relies on white blood cells
 - Derived from bone marrow stem cells
 - Numbers correlate with stages of infection.
 - Identified by a complete blood count and differential blood test.
CELLULAR RESPONSE: Phagocytosis

- 2 types of white blood cell:
 - Granulocytes
 - Agranulocytes

- Granulocytes
 - Have granular cytoplasm and multilobed nuclei
 - There are three types:
 - Neutrophils
 - Basophils
 - Eosinophils
CELLULAR RESPONSE: Phagocytosis

- Neutrophils: Phagocytic cells
 - Guard skin and mucous membranes
 - Make up about 70% of white blood cell population
 - Derived from bone marrow and mature there
 - Use TLRs to detect components of pathogens.

- Circulate in the blood for 6 to 10 hours
 - Remain in tissues for up to 2-6 days
 - Guided to site of tissue damage by chemotaxis

CELLULAR RESPONSE: Granulocytes

- Neutrophils
 - Use margination to stop at the site of infection
 - Passage from blood into tissues is called diapedesis
 - Neutrophil function is tightly controlled
 - Have a short life span
 - Are programmed for apoptosis
CELLULAR RESPONSE: Granulocytes

- Basophils
 - Derived from progenitor cells in the bone marrow
 - Have a short life span – only a few days
 - Only small numbers circulate in blood

- Activated by bacteria, viruses, and parasites (using TLRs)
- They carry receptors for IgE
- The binding of IgE causes the release of histamine
 - Histamine amplifies innate immune reactions.

- Eosinophils
 - Very small numbers circulate in the blood
 - Numbers increase in cases of parasitic infection and allergic response
 - Primary defense to parasite infection
 - Produce powerful enzymes that attack parasites
 - Eosinophils can modulate the inflammatory response
CELLULAR RESPONSE: Granulocytes

- Have cytoplasmic granules that are not easily seen
- Three types of agranulocytes:
 - Monocytes
 - Macrophages
 - Lymphocytes – part of the adaptive immune system

CELLULAR RESPONSE: Agranulocytes

- Monocytes
 - Derived from bone marrow cells
 - Only small numbers circulate in the blood:
 - Circulate in a nonphagocytic form
 - Numbers increase during infection.
CELLULAR RESPONSE: Agranulocytes

- **Monocytes**
 - Guided to the site of tissue damage by chemotaxis:
 - Second cell type to arrive at the site of infection.
 - Differentiate into powerful phagocytic macrophages at the site.

- **Macrophages**
 - Responsible for the phagocytosis of:
 - Bacteria
 - Fungi
 - Parasites.
 - Also attack tumor cells and normal cells that are functioning abnormally.

- **Macrophages**
 - Remove cellular debris
 - Three types of macrophage:
 - Derived from monocytes
 - Wandering – move throughout the body
 - Resident (fixed) – stay in specific locations.
 - Part of the mononuclear phagocytic system.
CHEMICAL MEDIATORS: Cytokines and Chemokines

- Two types of chemical mediators of the innate immune response:
 - Cytokines
 - Chemokines
- They are both produced at the onset of and throughout the infection.

CHEMICAL MEDIATORS: Cytokines

- Low molecular weight proteins
- Released by a variety of cell types
 - Release is in response to stimuli associated with infection.
- Induce innate immune responses
- Affect the cells that produce them and other cells
CHEMICAL MEDIATORS: Cytokines

- Two families of cytokines:
 - Hematopoietin family
 - Tumor necrosis family
- Both involved in innate and adaptive immune response.

CHEMICAL MEDIATORS: Cytokines

- All cytokines have the same defining characteristics:
 - Secreted from white blood cells
 - Regulate inflammatory and immune responses
 - React with specific receptors on target cells
 - Alter activity of those cells
 - Have overlapping functions
 - Induce or inhibit effects of other cytokines
 - Activity is concentration dependent
CHEMICAL MEDIATORS:
Cytokines

- Cytokines that appear at the earliest time during infection:
 - Attract defensive cells to the site of infection
 - Released by many types of immune cells
 - Some are involved in angiogenesis and tissue repair.

CHEMICAL MEDIATORS:
Chemokines

- Two broad groups:
 - CC Group
 - CXC Group

- The CC group
 - Promote migration of monocytes and lymphocytes
 - Induce monocytes to differentiate into macrophages
CHEMICAL MEDIATORS: Chemokines

- The CXC group
 - Promote migration of neutrophils to the site of infection
 - Promote diapedesis

Both groups are released in response to:
- Bacterial or viral infection
- Tissue damage
- Chemokines also play a role in the destruction of pathogens.

OTHER CELLS IMPORTANT IN THE INNATE IMMUNE RESPONSE

- Three other types of cell are very important in the innate immune response:
 - Mast cells
 - Dendritic cells
 - Natural killer cells
MAST CELLS

- Derived from bone marrow stem cells
- Also known as sentinel cells
- Responsible for allergic responses and parasitic infections
- Found throughout the body
 - Mostly in tissues exposed to the external environment

MAST CELLS

- Have three distinct properties:
 - Rapid and selective production of mediators
 - Enhancement or recruitment of effector cells
 - Influence the adaptive immune response

MAST CELLS

- Leave the bone marrow in an immature form
 - Mature when they arrive at tissues sites
 - Use TLRs to identify pathogens
 - Activated by invading pathogens
MAST CELLS

- Produce a variety of mediators
 - Cause alterations in vascular function and cellular recruitment
- Can reposition during tissue repair
- Can initiate and maintain the adaptive immune response
- Work in concert with the complement system

MAST CELLS

- The mast cell response can damage the host.
 - Due to the proximity of the blood vessels
 - Can cause vasculitis and atherosclerosis

DENDRITIC CELLS

- Regulate both the innate and adaptive immune response
- Have long membranous extensions
- Produced continually in the bone marrow
DENDRITIC CELLS

- Have a strategic location in mucosal tissues
 - Associated with routes of pathogen entry
 - Effects depend on location

DENDRITIC CELLS: Skin and Mucous Membranes

- Dendritic cells in the skin are called Langerhans cells
 - Located in basal layers of the epidermis
 - Connected to each other forming a network
 - Renewed by progenitor cells in the skin

- Activated by the capture of antigen
 - After activation, they move to regional lymph nodes.
 - This can trigger the adaptive immune response.
- Have the same function in skin and mucous membranes
 - Replaced by bone marrow-derived cells in mucous membranes
- In mucous membranes, cells are replaced by bone marrow-derived cells.
DENDRITIC CELLS:
Intestines

- Found in two locations:
 - Peyer’s patches
 - Lamina propria
- Can extrude dendrites through tight junctions into the intestinal lumen

DENDRITIC CELLS:
Lymphoid Tissues

- Dendritic cells in the lymphoid tissues are mature but less phagocytic.
 - Produce the inflammatory cytokines and chemokines
 - Use TLRs to identify nonself antigens
 - Bind antigens and move to areas of the lymph node where the T cells are located

NATURAL KILLER CELLS

- Found in peripheral tissues and blood
 - Different types found in different tissues
- Derived from bone marrow stem cells
 - Use margination and diapedesis to leave the blood
NATURAL KILLER CELLS

- Do not use TLRs for identification of pathogens
 - Kill tumor cells, virus infected cells, bacteria, fungi, and parasites
- Response is diminished in HIV infection

NATURAL KILLER CELLS

- Involved in the innate response in two ways:
 - Kill target cells
 - Produce cytokines
- Target cell killing is:
 - Mediated by apoptosis of the target cell
 - Triggered by the release of perforin and granzymes

NATURAL KILLER CELLS

- Produce a variety of cytokines:
 - TNF
 - Granulocyte-macrophage colony stimulating factor
- Also respond to cytokines
NATURAL KILLER CELLS

PHAGOCYTOSIS

- Phagocytosis is the cellular mechanism of the innate response.
- It is primarily carried out by:
 - Neutrophils
 - Macrophages
- Both are attracted to site of tissue destruction by chemotaxis.
 - Neutrophils arrive first.
 - Then monocytes – differentiate into macrophages as they arrive.

PHAGOCYTOSIS

- Phagocytosis has five phases:
 - Chemotaxis
 - Adherence
 - Ingestion
 - Digestion
 - Excretion
PHAGOCYTOSIS

FIVE PHASES OF PHAGOCYTOSIS:

Chemotaxis

- Chemicals are released from damaged tissue.
- These chemicals attract phagocytic cells.
 - Move down the gradient to the site of damage

Adherence

- The plasma membrane of the phagocytic cell makes contact with pathogen.
- Some bacteria can inhibit this step.
FIVE PHASES OF PHAGOCYTOSIS: Ingestion

- The pathogen is taken into a phagocytic cell.
 - Pseudopodia envelop the pathogen.
 - A vesicle forms around the pathogen – a phagosome.

FIVE PHASES OF PHAGOCYTOSIS: Digestion

- The phagosome fuses with a lysosome in the phagocytic cell.
 - This forms a phagolysosome.
- Enzymes from the lysosome destroy the pathogen.
 - This can take as little as 30 minutes.
FIVE PHASES OF PHAGOCYTOSIS:

Excretion

- After digestion, phagolysosomes contain pathogen fragments.
 - Residual bodies
 - These move to the surface of the phagocyte and discharge debris.

DEFEATING PHAGOCYTOSIS

- Some bacteria can resist phagocytosis.
 - Produce enzymes to destroy phagocytic cells
 - Produce capsules that inhibit adherence
 - Resist digestion
 - Destroy the phagolysosome membrane

DEFICIENCY IN PHAGOCYTOSIS

- Some patients can be deficient in phagocytosis
 - Chemotherapy and/or radiation patients
 - Immunocompromised patients
 - Transplant patients
INFLAMMATION

* The normal physiological response to trauma
 * Helps destroy pathogens
 * Involved in tissue repair and replacement

INFLAMMATION

* Four symptoms – all related to vasodilation:
 * Redness
 * Pain
 * Heat
 * Swelling

INFLAMMATION: Vasodilation

* Vasodilation is the cornerstone of inflammation.
 * Involves localized reactions
 * Characterized by increased blood flow
* The injured area becomes redder and warmer.
* Surrounding areas become swollen by fluid from blood vessels.
 * Swelling puts pressure on local pain receptors.
INFLAMMATION: Vasodilation

- Occurs in response to the release of chemical signals
- Four major chemical signals:
 - Histamine – found in many cell types
 - Enhances vasodilation
 - Kinins – released from damaged tissue
 - Recruit more phagocytic cells

- Prostaglandins – intensify effects of histamine and kinins
 - Help migration of phagocytes out of the blood and into tissues
- Leukotrienes – produced by mast cells
 - Promote adherence of phagocytic cells

- Also delivers clotting elements
 - These can wall off the affected area.
 - This can prevent the spread of infection.
INFLAMMATION: Phagocytic Migration

- Vasodilation leads to increased numbers of defensive cells.
- They must stop and leave the blood at the site of the trauma.
 - Stick to blood vessel walls – margination
 - Leave and move into tissue – diapedesis

THE ACUTE PHASE RESPONSE

- Only seen in acute illness
- Acute-phase proteins are produced:
 - Cytokines
 - IL-6 – causes production of more acute-phase proteins
 - Fibrinogen
 - Used in clotting
 - Kinins
 - Increase vasodilation

THE ACUTE PHASE RESPONSE

- Best known acute-phase proteins are:
 - C-reactive protein
 - Binds to phospholipids
 - Mannose-binding protein
 - Binds to mannose sugars on bacterial and fungal membranes
 - Coating attracts phagocytic cells
 - Also activates the complement system
FEVER

- Fever is a systemic rise in body temperature.
 - Clinically – oral temperature above 37.8°C, rectal above 38.4°C.
 - Often accompanies and augments inflammation
 - Can accompany certain immune responses
 - Most types of tissue injury cause fever

FEVER

- Caused by two types of pyrogen:
 - Exogenous – produced by invading pathogens
 - Endogenous – produced by the host
 - Interleukin-1 (IL-1)

FEVER

- IL-1 moves to hypothalamus
 - Causes release of prostaglandin
 - Fever continues as long as IL-1 is present
 - Crisis phase – when fever diminishes
FEVER

- Fever is a good thing.
 - It increases the speed of host defenses.
 - It causes the patient to rest.

FEVER

- Unchecked fever can be dangerous.
 - Causes denaturation of proteins
 - Inhibits CNS function
 - Causes dehydration and electrolyte imbalance
 - In extreme cases it can lead to coma
- Antipyretics are used to prevent temperature from rising too high.

THE COMPLEMENT SYSTEM

- The complement system has a lethal capability.
 - It also amplifies other innate responses.
 - It is activated immediately upon invasion by pathogens.
THE COMPLEMENT SYSTEM

- About 30 serum proteins are involved
 - They are produced in the liver and circulate in an inactive form.
 - Some function in a cascade sequence.
 - Those not involved in the cascade manage the regulation of the cascade.

Major function is lysis of the bacterial cell wall or viral envelope.
- Accomplished through the membrane attack complex
THE COMPLEMENT SYSTEM

- Interactions between complement proteins can follow three pathways:
 - Classical
 - Alternative
 - Lectin-binding

ACTIVATION OF THE CLASSICAL PATHWAY

- The classical pathway is seen in infections that have been seen before.
 - It is activated by antibody-antigen complexes.
 - Complement cascade proteins are numbered C1 through C9.
ACTIVATION OF THE ALTERNATIVE PATHWAY

- The alternative pathway works with pathogens that have never seen before.
- It is activated by three factors:
 - Factor B
 - Factor D
 - Factor P – properdin (also known as the properdin pathway)
 - They interact with LPS and endotoxin from the pathogen.
 - Complement protein C3 is attracted to this complex.

ACTIVATION OF THE ALTERNATIVE PATHWAY

- The alternative pathway is less efficient than the classical pathway.
 - It is still very useful in the early stages of infection.

ACTIVATION OF THE ALTERNATIVE PATHWAY

- [Diagram showing the activation process of the alternative pathway]
ACTIVATION OF THE LECTIN-BINING PATHWAY

- The lectin-binding pathway is stimulated by mannose.
 - It involves mannose-binding proteins.
 - They enzymatically cleave the complement protein C3.

C3 AND BEYOND

- All three pathways lead to C3.
 - C3 is the nexus of complement.
- Complement proteins C3 through C9:
 - Cause lysis
 - Amplify inflammation.
- Complement proteins C5 through C9 are the membrane attack complex.
C3 AND BEYOND

- Pathogens have defenses against complement.
 - Encapsulation
 - Discourages formation of membrane attack complex
 - Some Gram-negative bacteria lengthen surface glycolipids.
 - Prevents membrane attack
 - Some Gram-positive bacteria release enzymes.
 - Limit amplification of innate responses by complement.

COMPLEMENT DEFICIENCIES

- Some people are genetically deficient for complement components.
 - They are more prone to infections.
 - C3 deficiencies are the most dangerous.
INTERFERON

- Production of interferon is a host response to viral infection.
- Produced by and released from virus-infected cells
 - Moves to uninfected neighboring cells
 - Causes them to produce antiviral proteins
 - Makes uninfected cells resistant to infection

INTERFERON

- Different types are produced by different types of cells.
- There are three major forms:
 - Alpha – produced by monocytes and macrophages
 - Beta – produced by fibroblasts
 - Both are produced immediately after infection by viruses
 - Gamma – produced by T cells and Natural Killer cells
 - Protect against viral infection
 - Also re-stimulates macrophage activity

INTERFERON

<table>
<thead>
<tr>
<th>Class</th>
<th>Cell Source</th>
<th>Stimulated By</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha interferon (IFN-α)</td>
<td>Leukocytes</td>
<td>Virus infection</td>
<td>Stimulates production of antiviral proteins in uninfected cells</td>
</tr>
<tr>
<td>Beta interferon (IFN-β)</td>
<td>Fibroblasts</td>
<td>Virus infection</td>
<td>Same as those seen with IFN-α</td>
</tr>
<tr>
<td>Gamma interferon (IFN-γ)</td>
<td>T lymphocytes and natural killer cells</td>
<td>Virus infection and antigenic stimulation</td>
<td>Kills infected cells and activates destruction of tumors</td>
</tr>
</tbody>
</table>

Table 9.3.1: Microbiology: A Clinical Approach © Garland Science
Some people are genetically predisposed to infection:
- Genetic deficiency in TLRs
- Inability to produce cytokines or chemokines
- Deficiency in complement proteins
- Genetic deficiency in interferon production