CHAPTER 26
INFECTIONS OF THE SKIN & EYES

WHY IS THIS IMPORTANT?

Skin and eyes are in contact with potentially pathogenic organisms all the time.

OVERVIEW
OVERVIEW

- Many infections can occur on the skin.
 - The skin is always exposed to pathogens.
 - Soft tissue below the skin is a breeding ground for infections.
- Eyes are open to the outside world.
 - Infections here extremely dangerous.
 - Proximity to the nervous system
 - Potential for loss of vision

ANATOMY OF THE SKIN

- Largest organ in the body.
- Barrier between our body and the outside
 - First line of defense against invading microorganisms
- Outer layer (epidermis) comes into direct contact with the environment.
 - Constant shedding of cells keeps pathogens from successfully attaching to the skin
 - Several mechanical mechanisms discourage pathogens.
 - Production of perspiration flushes pathogens away
 - Sebum is a natural antibacterial substance.
 - Produced by the sebaceous glands
 - In spite of these, skin is often breached by trauma.
 - Wounds, abrasions, punctures, and bites
 - When this occurs, pathogens can get into the underlying tissue.
 - Infection of the skin caused by bacteria, viruses, and fungi.
SUMMARY OF SKIN INFECTIONS

<table>
<thead>
<tr>
<th>Infections</th>
<th>Organisms Causing the Infection</th>
<th>Characteristics of the Infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacterial</td>
<td>Staphylococcus aureus</td>
<td>Skin abscesses</td>
</tr>
<tr>
<td>Fungal</td>
<td>Scalp ringworm</td>
<td>Scalp lesions</td>
</tr>
<tr>
<td>Viral</td>
<td>Herpes simplex virus</td>
<td>Vesicles on skin</td>
</tr>
<tr>
<td>Parasitic</td>
<td>Schistosoma mansoni</td>
<td>Skin nodules</td>
</tr>
</tbody>
</table>

Types of skin infections:
- Macules
- Papules
- Vesicles
- Pustules

BACTERIAL INFECTIONS OF THE SKIN

<table>
<thead>
<tr>
<th>Infections of the skin</th>
<th>Organisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maculopapular rash</td>
<td>Staphylococcus aureus</td>
</tr>
<tr>
<td>Wet nodule</td>
<td>Pseudomonas aeruginosa</td>
</tr>
<tr>
<td>Ulcerated</td>
<td>Proteus mirabilis</td>
</tr>
</tbody>
</table>

Infections of soft tissues:
- Methicillin-resistant Staphylococcus aureus (MRSA)
- Clostridium perfringens
- Gas gangrene
BACTERIAL INFECTIONS OF THE SKIN

- Bacteria can infect skin and soft tissue just beneath the skin.
 - Soft tissue infections accompany a break in the skin.
- Soft tissue contains blood supply.
 - Rich environment for pathogen growth.
 - Increases the possibility of systemic infection.

BACTERIAL INFECTIONS OF THE SKIN

- Surgical procedures breach the skin.
 - Wound infections are important problem in hospital settings.
- Bite of dog or cat introduces organisms.
 - Can result in serious infection.

BACTERIAL INFECTIONS OF THE SKIN

- Intact skin is relatively dry.
- Surface of the skin usually has a pH of 5.0-6.0.
 - Too acidic for many pathogens.
- Skin’s normal flora is an additional barrier.
 - Coagulase-negative staphylococci and other Gram-positive organisms.
Sebum can be converted to free fatty acids by normal flora.
- Inhibit growth of pathogens
- Bacteria enter the skin via minor abrasions, hair follicles, surgical, or traumatic wounds.
- Fasciitis – infection of fasciae
 - Very difficult to treat, especially necrotizing fasciitis

Patients with bacteremia can develop necrotizing fasciitis.
- Streptococci reach fasciae
- Settle in small hematomas or in bruised areas
- Once bacteria enter the fasciae, they spread rapidly.
- Resulting inflammatory response affects the neurovascular bundles.
 - Thrombosis of these vessels compromises blood supply and nerves.
 - Area rapidly becomes necrotic.
- Infection can be so rapid surgical removal of the tissue is the only option.
BACTERIAL INFECTIONS OF THE SKIN

- Surface of the skin penetrated by ducts, hairs, and sweat glands.
- Microbial invasion can occur along any route.
 - Especially through any ducts that are obstructed

FOLLICULITIS: Pathogenesis

- Minor infection of hair follicles
 - Usually caused by *S. aureus*
 - Associated with sweat gland activity
- Most often seen in areas where sweat glands predominate.
 - Neck, face, axillae, and buttocks

FOLLICULITIS: Pathogenesis

- Blockage of the gland predisposes to folliculitis.
- Serious infections result in boils (furuncles).
 - Localized region of pus surrounded by tissue inflammation
FOLLICULITIS: Pathogenesis

- Antibiotics cannot penetrate a boil.
 - Difficult to treat
- Draining the abscess initial step.
- If body defenses do not wall off the infection:
 - Neighboring tissues become infected.
 - Enlarged infected region – a carbuncle
 - Extensive damage and fever.

FOLLICULITIS: Pathogenesis

- Folliculitis can also be caused by *Pseudomonas aeruginosa*.
- Increase in these infections due to hot tubs and whirlpools
 - Temperature results in large numbers of pathogens
 - Causes large areas of folliculitis
 - Symptoms normally subside when the insult is discontinued

ACNE: Pathogenesis

- Very common skin infection
 - Affects 17 million people in US
 - 85% are teenagers
- Three categories:
 - Comedonal acne
 - Inflammatory acne
 - Nodular cystic acne
ACNE: Pathogenesis

- Comedonal acne:
 - Inflammation of the hair follicles and sebaceous glands of the face
 - Glands become plugged by shedding skin cells and sebum.
 - Whiteheads (comedos) appear on the skin.
 - Blockage protrudes through the skin.
 - Blackheads (comedones) appear.

ACNE: Pathogenesis

- Inflammatory acne:
 - Caused by *Propionibacterium acnes*
 - Predominant anaerobe of the skin
 - Metabolizes the glycerol component of sebum
 - Causes free fatty acids to form
 - Presence of fatty acids initiates inflammatory response.

ACNE: Pathogenesis

- Inflammatory acne:
 - Neutrophils secrete enzymes that damage the wall of the follicles.
 - Causes pustules and papules
 - Primary cause is hormonal influence on the secretion of sebum.
 - Increased during puberty
 - Usually resolves spontaneously in adulthood
ACNE: Pathogenesis

- Nodular cystic acne:
 - Characterized by formation of cysts
 - Filled with pus
 - Leave prominent scars on the skin

FOLLICULITIS AND ACNE: Treatment

- Folliculitis treated locally by drainage without antibiotics.
- All three types of acne can usually be effectively treated with topical drying agents.

ERYSIPelas: Pathogenesis

- Characterized by a rapidly spreading infection of the deeper layers of the dermis
- Always caused by group A streptococci
- Symptoms include:
 - Edema of the skin marked by erythema and pain
 - Systemic infection with lymphadenopathy and fever
- Can progress to:
 - Septicemia
 - Local necrosis of the skin
 - Serious and requires immediate treatment
ERYSIPelas:

Treatment

- Penicillin and streptomycin are effective.

SCALDED SKIN SYNDROME

- Salient sign is blistering and peeling off of large sheets of skin.
- Caused by two exotoxins secreted by certain strains of *S. aureus* – exfoliatins.
 - Gene for one located on the bacterial chromosome
 - Gene for the other located on a plasmid
- Normally restricted to infants
 - Can occur in adults, especially in late stages of toxic shock syndrome

SCALDED SKIN SYNDROME

[Image of skin condition]
SCALDED SKIN SYNDROME: Pathogenesis

- Exotoxins are transported through the blood to distal sites.
 - Cause the upper layers of the skin to separate and peel off
- First sign is a reddened area, usually around the mouth.
 - Soon spreads forming large, soft vesicles over the whole body

SCALDED SKIN SYNDROME: Pathogenesis

- Top layer of skin peels away
 - Exposed dermal layer looks scalded
- Condition is only temporary.
 - Skin will regenerate in 7-10 days.
- Accompanying high fever throughout infection

SCALDED SKIN SYNDROME: Treatment

- Good immune response to this infection.
 - Recurrence is unlikely.
- Most bacteria responsible are sensitive to penicillin.
 - Cephalosporins are effective for penicillin-resistant strains.
GAS GANGRENE
(CLOSTRIDIUM PERFRINGENS)

- Gangrene – tissue necrosis resulting from an obstructed blood supply.
- Bacteria responsible for the infection release gases.
- Caused by Clostridium perfringens.
- Usually associated with deep tissue wounds.

GAS GANGRENE:
Pathogenesis

- C. perfringens is a Gram-positive anaerobic, spore-forming rod.
- Spores are introduced into dead tissue.
 - Blood circulation has been impaired.
 - Environment is perfect for anaerobic growth.
- Spores germinate and bacteria multiply
 - Produce toxins which destroy tissue surrounding the already-dead tissue
- Destruction expands the anaerobic environment
 - Infection spreads
GAS GANGRENE: Pathogenesis

- Onset of gas gangrene is sudden.
 - 12 - 48 hours after initial injury.
 - Bacteria grow and produce hydrogen gas.
 - Causes breaks in the tissue – crepitant tissue.

- Movement of the affected area causes snap, crackle, and popping sounds.
- Also a foul smell
 - Obvious that infection has set in
- Infection is accompanied by high fever, massive tissue destruction, shock, and blackened skin.
- If not treated, gas gangrene is lethal.
GAS GANGRENE: Treatment

- Treatment in hyperbaric chambers is effective.
 - Kills the anaerobic pathogens
 - Penicillin and clindamycin should also be given.

CUTANEOUS ANTHRAX

- *Bacillus anthracis* causes inhalation anthrax – a serious respiratory infection.
- Can also cause less harmful infections in the skin
 - Cutaneous anthrax is one.

CUTANEOUS ANTHRAX: Pathogenesis

- First signs usually appear 2 - 5 days after anthrax spores have been inoculated into an opening in the skin.
 - Most often the forearm or hand
 - Initial lesion is a papule.
 - Looks like an insect bite
CUTANEOUS ANTHRAX: Pathogenesis

- Papule progresses through vesicular and ulcerative stages over 7-10 days.
- Forms a black eschar surrounded by edema.
- Symptoms are normally mild.
 - Lesions typically heal slowly after the scab falls off.
- Infection can become systemic.
 - Progresses to massive edema and toxemia
 - Can be fatal

CUTANEOUS ANTHRAX: Treatment

- Antibiotics have little effect.
- *Bacillus anthracis* is susceptible to ciprofloxacin.

VIRAL INFECTIONS OF THE SKIN

- Same barrier constraints that apply to bacteria apply to viruses.
 - Needs to be an entry point
- Several common viral infections manifest their signs on the skin after systemic infection.
MEASLES

- Extremely contagious infection
- Caused by single-stranded RNA virus
- Leading cause of vaccine-preventable disease worldwide
- Common forms include:
 - Rubeola (lasts 5 days)
 - Hard measles (lasts 7-18 days)

MEASLES

- Measles virus can produce severe infection in children.
 - High fever, widespread rash, and transient immunosuppression
- Usually occurs in preschool children
 - Those who have not yet been vaccinated (MMR vaccine).
- Only one serotype of measles
 - Shows some antigenic drift

MEASLES: Pathogenesis

- 9-11 days after exposure:
 - Infection begins in respiratory tract.
 - Cough, runny nose, and fever.
- Initial signs followed by:
 - Viremia
 - Lymphatic spread of the virus throughout the body
 - Lymph tissue, bone marrow, and skin

Extremely contagious infection
Caused by single-stranded RNA virus
Leading cause of vaccine-preventable disease worldwide
Common forms include:
 - Rubeola (lasts 5 days)
 - Hard measles (lasts 7-18 days)
MEASLES: Pathogenesis

- Virus can be present in the blood during first week of illness.
 - Viruria can persist for up to four days after rash.
- Immunity is suppressed.
 - Susceptibility to bacterial superinfections
- Koplik’s spots appear on the mucous membrane of cheeks
 - 1-3 days after respiratory signs and before the skin rash.

MEASLES: Pathogenesis

- Characteristic red skin rash appears 1 day after the Koplik’s spots.
- Significant numbers of virions are found in:
 - Koplik’s spots
 - Areas around rash
- Lymphadenopathy is common.
MEASLES:
Pathogenesis

- Measles can be very severe in immunosuppressed individuals.
 - Can be lethal
- 15-25% mortality rate in developing countries.
- Up to 15% of cases of measles have complications.
 - Otis media, sinusitis, mastoiditis, pneumonia, and sepsis
 - 1 in every 1000 cases develop encephalitis
 - Permanent nerve damage or death

MEASLES:
Treatment

- No therapy other than supportive care.
- Close observation is required for potential complications.
- Very effective vaccine (part of MMR) is routinely given to children.

RUBELLA (GERMAN MEASLES)

- Very mild or asymptomatic infection
 - Low-grade fever, lymphadenopathy, and faint macular rash.
- Very serious in pregnant women
 - Can cause congenital abnormalities in fetus.
- Usually seen in the spring
- Infected individual contagious for 7 days before and 7 days after appearance of rash.
RUBELLA: Pathogenesis

- Virus enters through the respiratory tract.
- Spreads to the blood, lymph organs, and skin
- Viremia is seen up to 8 days before the rash.
- Viral shedding in oropharynx up to 8 days after.
- Transplacental transfer of virions can occur in pregnancy.

RUBELLA: Treatment

- No specific therapy.
- Live attenuated vaccine (part of MMR) is recommended in the first year of life.

SMALLPOX (VARIOLA)

- Infection caused by a DNA poxvirus.
- Two forms of smallpox:
 - Variola major – mortality rate 20% or higher
 - Variola minor – mortality rate 1%
SMALLPOX (VARIOLA)

- Smallpox has effectively been eradicated from the entire world.
 - Last victim in Somalia in 1977
- Only reservoir is humans.
 - Should be no more cases
- Stocks of smallpox virus mean further infections are possible
 - Decreased herd immunity to smallpox increases the possibility

SMALLPOX: Pathogenesis

- Dominant feature is the appearance of papulovesicular rash and pustules.
- Incubation period is usually 12-14 days.
 - Can be 4-5 days
 - Abrupt onset of fever, chills, and muscle aches
- Rash appears 3-4 days later.
 - Papulovesicles most prominent on the head and extremities.
 - Become pustular over 10-12 days.
- Death from smallpox results from:
 - Overwhelming virus infection
 - Bacterial superinfection
SMALLPOX:

Treatment

- Virus has potential as a bioweapon.
 - Many countries stockpiling vaccine
- No infected population
 - Difficult to test potential antibiotics

CHICKENPOX AND SHINGLES

- Caused by the varicella-zoster virus.
- 90% of US population infected by age 10.
 - Mortality rate very low
- Infection has two clinical manifestations:
 - Chickenpox
 - Shingles

CHICKENPOX AND SHINGLES:

Pathogenesis

- Virus is spread through secretions of the respiratory tract.
- Infection occurs in upper respiratory tract, lymph nodes.
- Causes vesicular rash
 - Usually initially on back of the head and ears
 - Then on the face, trunk, and proximal extremities
- Commonly involvement of mucous membranes and fever early in infection.
- Irritating, itchy lesions can appear.
- Secondary viremia includes infection of the skin.
CHICKENPOX AND SHINGLES: Pathogenesis

- Latent form of the virus resides in the dorsal root ganglia.
- After latent virus is reactivated:
 - Multiplies in a sensory neuron
 - Travels down to the skin
- Shingles rash comprises vesicles similar to those seen in chickenpox.

- Shingles vesicles are localized in distinct areas of the body.
 - Usually around the waist
 - Can be on the upper chest and back
- Reactivation increases in frequency with advancing age.
- Lesions are very painful.
 - Appear several days to several weeks after pain
 - Can persist for months
- Can be multiple organ involvement in immunocompromised patients
 - Significant mortality rate
CHICKENPOX AND SHINGLES: Treatment

- Acyclovir and famciclovir reduce fever and skin lesions.

HERPES SIMPLEX TYPE I (HSV-1)

- HSV-1 causes above-the-waist infections.
 - HSV-2 causes below-the-waist infections.
- Latent infection
 - Signs appear when virus is reactivated.
- Virus found worldwide.
 - 90% of population in developing countries have antibodies.
- Humans are the only reservoir.

HSV-1: Pathogenesis

- After initial infection:
 - Syncytia develop
 - Degeneration of epithelial cells
 - Necrosis at the infection focus
 - Inflammatory response
 - Infiltration by neutrophils then mononuclear cells
HSV-1:
Pathogenesis

- Virus spreads either interneuronally or intraneuronally.
- Intraneural spread
 - Virus can hide from the immune response and lie latent for years.
- Latent virus resides on the trigeminal, superior cervical, and vagus nerve ganglia.
 - Reactivation stimuli are not yet understood.
- HSV-1 infection is often asymptomatic.

HSV-1:
Pathogenesis

- Principal sign is grouped or single vesicular lesions that become pustular
 - Coalesce to form multiple ulcers
- Can be painful ulcerative lesions on the tongue, gums, and pharynx
 - Usually persist for 5-12 days
- Latent reactivation causes painful lesions on or near lips – cold sores
 - Can last for as long as 7 days

HSV-1:
Pathogenesis

- [Image of herpes lesions]

HSV-1: Pathogenesis

- Sometimes infects the fingers, around the nails
 - Usually because of a break in the skin
 - Causes formation of painful pustular lesions
- Virus can also infect the eye.
 - Most common cause of corneal damage and blindness in developed world.
 - Dendritic ulcerations in the conjunctiva and cornea cause scarring.

HSV-1: Treatment

- Most effective treatment is the nucleoside analog acyclovir.
 - Reduces primary infection and can suppress recurrence.
- Immunocompromised may harbor resistant HSV.
 - Foscarnet can be used.

WARTS

- Small growths on the skin or mucous membranes.
 - Respiratory tract, genital tract, and interior of the mouth
- Caused by human papillomavirus (HPV)
- HPV infection is life-long:
 - Warts can return even after removal
 - Virus is still associated with the tissue
WARTS

- Warts vary in appearance, location, and pathogenicity
 - Some are small and self-limiting
 - Others are large but benign
 - Others are malignant
- Some strains of HPV cause cervical cancer.
- Warts are larger and occur more frequently in the immunodeficient.

WARTS: Pathogenesis

- Transmitted by direct contact between humans and by fomites.
- Genital warts can be sexually transmitted.
 - Incubate for 8-20 months before visible signs develop

WARTS: Pathogenesis

© CDC/Susan Lindsley
WARTS:
Pathogenesis

- Dermal warts form after virus gains entry through broken skin.
 - Incubates for 1-4 weeks
 - Virus infects epithelial cells
 - Proliferation of these cells forms the warts
 - Occurs at the boundary between the dermis and the epidermis
 - Usually only one at most few during an outbreak.

TREATMENT OF WARTS

- Can be spontaneous regression
- No satisfactory treatment of warts
 - Growth can be removed using liquid-nitrogen cryotherapy.
 - Antimetabolites can block HPV infection.
- Fungi are always present on the skin
 - Rarely bother us
- Compromise of an individual’s health causes opportunistic infections
- As with bacteria and viruses, unbroken skin is a barrier.

CUTANEOUS CANDIDIASIS

- Caused by *Candida albicans*
 - Part of the normal flora, oropharyngeal, gastrointestinal, and genitourinary tracts
- Can grow in multiple morphological forms
 - Most often seen as a yeast
 - Capacity to form hyphae
 - Strongly associated with pathogenicity
CANDIDIASIS: Pathogenesis

- Hyphae invade deep into tissues.
 - Form strong attachments to human epithelial cells
 - Secrete proteinases and phospholipases
 - Digest epithelial cells and facilitate tissue invasion
- C. albicans surface proteins:
 - Bind C3 receptors.
 - Prevent opsonization.

Compromise of T-cell function or overuse of antibiotics allows C. albicans to increase in numbers
- Results in local and invasive infection
- Indwelling catheters and chemotherapy also advance invasion

Infections usually occur in folds of skin.
- Two wet skin surfaces are opposed to each other
- Cause diaper rash
- Initial lesions are erythematous papules.
- Thrush can develop in infants and patients with immunodeficiencies.
CANDIDIASIS: Pathogenesis

- Infection usually confined to chronically irritated areas.
- Mucocutaneous candidiasis can be seen in immunocompromised patients.
 - Infections of the hair and skin fail to heal and require therapy.
 - Results in considerable discomfort
 - Can cause disfigurement with extensive areas of lesions.

CANDIDIASIS: Treatment

- *Candida albicans* is usually susceptible to nystatin, fluconazole, and azole antibiotics.
 - Deep tissue infections also require amphotericin B.
- Measures should be taken to decrease moisture.
- Fluconazole is best treatment for mucocutaneous candidiasis.
DERMATOPHYTOSIS

- Dermatophytes are fungi that are pathogenic to the skin.
 - Cause cutaneous mycoses
 - Result in slow, progressive eruptions of the skin
 - Unsightly but not painful or life-threatening.
- Different forms are classified according to the inflammatory response.
- All forms typically involve erythema, induration, itching, and scaling.

DERMATOPHYTOSIS

- Dermatophytosis on the scalp – tinea capitis
- Dermatophytosis in the groin – tinea cruris (jock itch)
- Dermatophytosis on the feet – tinea pedis (athlete’s foot)
DERMATOPHYTOSIS

- Ecological and geographic differences in different dermatophyte infections.
- Many domestic cats and dogs act as reservoirs.
- Human-to-human transfer requires close contact.
 - Dermatophytes poorly infective
 - Very low virulence
- Infection usually seen in families, barber shops, and locker rooms.

DERMATOPHYTOSIS: Pathogenesis

- All three forms of tinea begin when dermatophyte hyphae contact minor traumatic skin lesions.
- Stratum corneum is penetrated by hyphae.
 - Dermatophytes proliferate in the keratinized layers of the skin.
 - Aided by production of protease enzymes.
- Course of the infection depends on anatomical location, moisture, and the rate skin cells are shed.
 - Speed and strength of inflammatory response has a role.
 - Faster skin is shed, less time it takes to get over the infection
 - Inflammation can increase shedding rate.
 - Immunosuppression increases the length of the infectious period.
DERMATOPHYTOSIS: Pathogenesis

- Invasion of deep tissues is rare.
- Most infections are self-limiting.
 - Can become chronic if the inflammatory response is poor
- Infections can also affect the nails and hair follicles.
 - Plugs follicles, causing hair to become brittle.

DERMATOPHYTOSIS: Treatment

- Most resolve without therapy.
- If not, topical agents like tolnaftate, allylamines, and azoles are used.
- Extensive infections in the nail beds require systemic therapy with griseofulvin or itraconazole for weeks or months.
- Tinea capitis also requires systemic therapy.

PARASITIC INFECTIONS OF THE SKIN

- There are several common parasitic infections of the skin.
- As with other infections, the skin must be broken.
CUTANEOUS LEISHMANIASIS

- Zoonotic parasitic infection seen tropical and subtropical rodents.
 - Common in central Asia, India, Middle East, South and Central America
- Humans contract it when they enter areas where the rodents live.
- Infection is vector-transmitted from rodent to human.
 - Sand flea is the vector.
- Can also be transmitted through domestic dogs
 - Dog fleas are the vector.

CUTANEOUS LEISHMANIASIS: Pathogenesis

- Lesions appear on the extremities or the face weeks to months after the bite.
 - Appear as itchy pustules
 - Accompanied by lymphadenopathy
- Pustules ulcerate after a few months.
 - Can be several of these lesions on the body
CUTANEOUS LEISHMANIASIS: Pathogenesis

- Lesions heal spontaneously in 5-12 months.
 - Leaves depigmented scars
- Lesions on ear can cause destruction of the pinna.
- Patients with AIDS have multiple nonhealing lesions.

CUTANEOUS LEISHMANIASIS: Treatment

- If no involvement of mucous membranes then no treatment required.
- Amphotericin B, ketoconazole, itraconazole are used for more severe cases.

PEDICULOSIS

- Pediculosis – parasitic infection by lice
 - Can occur on the head or body
 - Often in the genital region – crabs
- Body lice can transmit epidemic typhus.
- Outbreaks of head lice are frequently seen in schools.
PEDICULOSIS: Pathogenesis

- Lice require blood.
- Feed several times a day.
- Itching is a reaction against the saliva of the biting louse.
- Scratching can result in secondary bacterial infection.
- Head louse has specialized legs to grasp hair shaft, usually at the base.

PEDICULOSIS: Pathogenesis

PEDICULOSIS: Treatment

- Usually involves combing out the lice and nits in combination with non-prescription drugs.
- Increasing resistance to these drugs
- Topical ointments such as lindane and malathion are effective but toxic.
INFECTION OF THE EYES

- Affected by infections in the same manner as the skin.
- Eyes are a privileged site.
 - Essentially protected from the immune system.
- Mechanical barriers such as tears protect the eye from infecting organisms.

INFECTION OF THE EYES

<table>
<thead>
<tr>
<th>Infection</th>
<th>Causing Organism</th>
<th>Infection Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacterial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ophthalmia</td>
<td>Streptococcus</td>
<td>An infection typically</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the eye</td>
</tr>
<tr>
<td>Ophthalmia</td>
<td></td>
<td>causing vision loss</td>
</tr>
<tr>
<td></td>
<td>gonorrhoeae</td>
<td></td>
</tr>
<tr>
<td>Constrictio</td>
<td>Several bacterial species</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Haemophilus influenzae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Streptococcus pneumoniae</td>
<td></td>
</tr>
<tr>
<td>Trachoma</td>
<td>Chlamydia trachomatis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keratitis</td>
<td>Bacteria, viruses, and fungi</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parasitic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ophthalmitis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leprosy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lues</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3.1: Infections of the Eyes © Garland Science

CONJUNCTIVITIS AND OTHER EYE INFECTIONS

- Eye infections are usually painful.
- There is also potential for vision loss.
- Conjunctivitis is the most common infection.
 - Occurs in all age groups
 - Easily spread if a contaminated hand rubs the eyes
CONJUNCTIVITIS AND OTHER EYE INFECTIONS

- Parts of the eye other than the conjunctiva also become infected:
 - Cornea infection – keratitis
 - Anterior and posterior chambers
 - Orbital sinuses can also be involved
 - Can be life-threatening
 - Close proximity to the central nervous system

CONJUNCTIVITIS AND OTHER EYE INFECTIONS

- Contact lenses washed in contaminated water
 - Increase in numbers of cases of lens keratitis
- Aggressive keratitis caused by *Pseudomonas aeruginosa* occurs in hospitals.
 - Painful
 - Loss of vision can occur
- Eyelid abscesses (styes) are fairly common problems.
- Infection of the entire eyelid is also possible.
- Lacrimal gland and duct can be infected.

TRACHOMA

- Leading eye infection in underdeveloped countries.
 - An estimated 500 million people are affected.
 - Approximately 10 million have been blinded by it.
- Caused by *Chlamydia trachomatis*
- Spread to the eyes by hands, fomites, and flies.
- Essentially a chronic conjunctivitis.
 - Causes scarring, corneal ulceration, and eventual vision loss
RIVER BLINDNESS

- Caused by the parasite *Onchocerca volvulus*.
- Affects 20 million people worldwide.
- Spread by blood-sucking blackfly
 - Transmits parasite to the eye
- Parasite invades the anterior chamber
 - Causes corneal ulceration, fibrosis, and blindness

EYE INFECTIONS: Treatment

- Topical eye drops and ointments containing erythromycin or gentamicin are effective against acute bacterial conjunctivitis.
- Fluoroquinolones can be used for eye infections caused by *Pseudomonas*.
- Quinolones such as ciprofloxacin useful for all types of eye infection.

NEONATAL EYE INFECTIONS

- Neonatal gonorrheal ophthalmia:
 - Serious conjunctivitis caused by *Neisseria gonorrhoeae*.
 - Contracted as infant passing down the birth canal.
- *Chlamydia trachomatis* can also infect the eyes of newborns.
- Both infections cause large amounts of pus to form in the eyes.
 - Causes ulceration and scarring of the cornea if not treated
- Common practice to treat eyes of newborn infants with erythromycin.
NEONATAL EYE INFECTIONS

LOAIASIS

Eye infection caused by the parasitic worm *Loa loa*.
- Found in African rain forests
- Transmitted to humans by the deer fly
- Acquires the parasite from infected humans

Loa loa matures in its vector – the deer fly.
- Worm migrates to the mouth of the fly.
 - Transmitted to a human when the fly bites
- Microfilariae migrate through the subcutaneous tissue.
 - Cause inflammation
 - Settle in the cornea and conjunctiva
- Worms can grow to more than an inch in length.